Probabilistic Planning via Heuristic Forward Search and Weighted Model Counting
نویسندگان
چکیده
منابع مشابه
Probabilistic Planning via Heuristic Forward Search and Weighted Model Counting
We present a new algorithm for probabilistic planning with no observability. Our algorithm, called Probabilistic-FF, extends the heuristic forward-search machinery of Conformant-FF to problems with probabilistic uncertainty about both the initial state and action effects. Specifically, Probabilistic-FF combines Conformant-FF’s techniques with a powerful machinery for weighted model counting in ...
متن کاملConformant Planning via Heuristic Forward Search
Conformant planning is the task of generating plans given uncertainty about the initial state and action effects, and without any sensing capabilities during plan execution. The plan should be successful regardless of which particular initial state we are in. This paper is motivated by the observation that (1) Conformant planning without conditional effects can be handled easily by any forward ...
متن کاملFast Probabilistic Planning through Weighted Model Counting
We present a new algorithm for probabilistic planning with no observability. Our algorithm, called Probabilistic-FF, extends the heuristic forward-search machinery of Conformant-FF to problems with probabilistic uncertainty about both the initial state and action effects. Specifically, Probabilistic-FF combines Conformant-FF’s techniques with a powerful machinery for weighted model counting in ...
متن کاملContingent Planning via Heuristic Forward Search witn Implicit Belief States
Contingent planning is the task of generating a conditional plan given uncertainty about the initial state and action effects, but with the ability to observe some aspects of the current world state. Contingent planning can be transformed into an And-Or search problem in belief space, the space whose elements are sets of possible worlds. In (Brafman & Hoffmann 2004), we introduced a method for ...
متن کاملContingent Planning via Heuristic Forward Search with Implicit Belief States
Contingent planning is the task of generating a conditional plan given uncertainty about the initial state and action effects, but with the ability to observe some aspects of the current world state. Contingent planning can be transformed into an And-Or search problem in belief space, the space whose elements are sets of possible worlds. In (Brafman & Hoffmann 2004), we introduced a method for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Artificial Intelligence Research
سال: 2007
ISSN: 1076-9757
DOI: 10.1613/jair.2289